
IBM Hybrid Data Management

Deploying
Postgres
databases
in containers
Getting started

2IBM Hybrid Data Management Deploying Postgres databases in containers

Contents

	– What is driving containers?

	– Why choose containerized
databases now?

	– The bottom line

	– How EDB accelerates
containerization

	– Who benefits from
using containers?

	– Conclusion

Introduction
IBM is committed to the value of containers—in particular with the
widespread rollout of Red Hat® OpenShift® Kubernetes containers
for the IBM Cloud Pak® for Data platform. In this white paper, IBM
Business Partner® EDB explores the factors driving the growth of
containers, as well as the opportunities and challenges of a specific
container use case: databases.

Today it is safe to say that containers and container orchestration
have left the hype phase and are quickly becoming mainstream
application development technologies. The container growth trends
are compelling:

	– According to a survey of over 600 IT decision makers conducted
by ClearPath Strategies for the Cloud Foundry Foundation, 30%
of enterprises have already deployed containers and 42% are in
the evaluation stage.

	– A Sysdig report shows that the median number of containers
per server now stands at 15, up 50% over the previous year.

	– Containers are not only being experimented with in dev/test
environments. A Portworx survey of more than 500 IT professionals
revealed that in 2018, 83% of the enterprises running containers
were using them in production, versus 67% in 2017.

	– Diamanti’s Container Adoption Benchmark Survey clearly shows
that container use cases are becoming far more diverse, including
new cloud-native applications (~55%), lightweight stateless apps
(~39%), modernizing legacy apps (~31%), and databases (~30%).

	– 451 Research reports that revenues from container technologies in
2018 were $1.53 billion, which is a little more than three times the
revenues in 2015. By 2020, container technology revenues are
expected to grow by another 75%, reaching $2.7 billion.

But what is a container, exactly? A container is a resource-isolated
software object that packages all the code, configurations, and
dependencies needed to execute and run an application on any
Linux® or Windows platform, regardless of the environment (on-
premises, public or private cloud, or even bare metal). Because
multiple containers can share a single operating system (OS), they are
significantly more lightweight than virtual machines (VMs). Container
orchestration platforms, such as Kubernetes, automatically launch
clusters of containers and manage their entire lifecycle, making it
easier to deploy containers at scale.

https://containerjournal.com/2018/07/10/container-adoption-starts-to-outpace-devops/
https://siliconangle.com/2018/05/29/report-software-container-adoption-grows-deployments-scale/
https://www.sdxcentral.com/articles/news/container-adoption-has-nearly-doubled-in-last-year-says-portworx-survey/2018/12/
https://diamanti.com/wp-content/uploads/2018/07/WP_Diamanti_End-User_Survey_072818.pdf

3IBM Hybrid Data Management Deploying Postgres databases in containers

What is driving containers?
In The Road to Abstraction, Stephen O’Grady places containers on
a continuum of virtualization that started in the 1960s with COBOL,
which buffered program developers from the bits and bytes of
machine language.

Another significant node on the virtualization continuum was Java
Application Servers, which emerged at the turn of the millennium
to provide an abstraction layer between Java apps and the underlying
OS and hardware infrastructure.

In parallel, VMs—with their ability to abstract and standardize
infrastructure deployments on commodity servers—became popular.
VMs are still widely deployed in data centers around the globe, and
will most likely be used for many years to come. However, there are
numerous factors that have driven, and will continue to drive, the
growth of container usage—whether alongside or instead of VMs.
These drivers include:

	– With more and more born-in-the-cloud apps, containers, along
with microservices and serverless, are an integral part of the trend
towards cloud-native technology.

	– By abstracting apps completely from the OS and infrastructure
layers, containers provide unprecedented agility and flexibility
to support a DevOps approach of continuous integration/delivery/
deployment. In addition, container images launch much faster
than VMs, making them more suitable for today’s dynamic runtime
environments, in which apps are expected to scale up and down
on demand.

	– Containers save costs throughout the application lifecycle, from
dev/test to production. Some quantified examples of these
savings are:
•	 Reduced hypervisor licensing fees that can lower production

environment costs by as much as 50%.
•	 Process optimizations that not only streamline dev/test costs

by as much as 70%, but also shorten time-to-market so that
revenues and other business values are captured more quickly.

•	 Thrifty runtime resource consumption as compared to VM
deployments, since you don’t need to run as many copies
of the OS—up to 80% fewer servers.

	– As opposed to proprietary VM platforms, containers have been
primarily open source. Enterprise development teams using
containers benefit from a vibrant open-source community. They
also avoid vendor lock-in, with 83% of containers today running
on the royalty-free Docker Engine.

	– From a developer and operator standpoint, container images run
exactly the same in development, staging, and production,
regardless of where they are deployed. This consistency eliminates
the “it works on my machine” response in which problems arise
due to a discrepancy between environments.

All of these benefits have undoubtedly contributed to the enthusiastic
adoption of containers.

However, EDB believes that the single most important container value
proposition is application portability, which is alluded to in the last
bullet point. With increasingly diverse and complex hybrid and multi-
cloud environments becoming the norm, it is a huge benefit to be able
to operate the same software in the same way across multiple public
and private clouds, and even in on-premises virtualized environments.
All the app deployment and infrastructure requirements are packaged
in the container image, which can be launched anywhere, with full
confidence that it will perform as expected.

It is also important to acknowledge that containers could not have
gone mainstream without the emergence of container orchestration
frameworks that manage and deploy containers across clusters, on
demand. The leading framework by far is Kubernetes, the open-source
pioneer of container management that originally came out of Google.

Kubernetes is also the underlying foundation for other frameworks,
such as OpenShift, GKE, Amazon EKS, and IBM Cloud®, and is
now being incorporated into frameworks that were not originally
Kubernetes-based, such as Docker Enterprise and Cloud Foundry
with PKS.

With orchestration, containers are automatically reconfigured, scaled,
upgraded, updated, and migrated without disrupting applications
and services. The orchestration framework monitors the health of
the runtime container deployment and ensures high availability and
continuity in failover or disaster scenarios. It can also monitor load
and automatically scale services up and down in response to changes
in demand. The container orchestrator facilitates networking among
containers or to external environments. It handles data storage in
general, and statefulness in particular, through the management of
attached persistent or ephemeral volumes, which can be local or in
the cloud.

https://redmonk.com/sogrady/2017/04/13/abtraction/
https://redmonk.com/sogrady/2017/04/13/abtraction/?utm_medium=OSocial&utm_source=Thinkoutloud&utm_content=000026OP&utm_term=10000659&utm_id=EDB-Deploying-Postgres-Paper&cm_mmc=OSocial_Thinkoutloud-_-Cloud+and+Data+Platform_DAI+Hybrid+Data+Management-_-WW_WW-_-EDB-Deploying-Postgres-Paper&cm_mmca1=000026OP&cm_mmca2=10000659
http://i.dell.com/sites/doccontent/business/solutions/whitepapers/en/Documents/Containers_Real_Adoption_2017_Dell_EMC_Forrester_Paper.pdf
http://i.dell.com/sites/doccontent/business/solutions/whitepapers/en/Documents/Containers_Real_Adoption_2017_Dell_EMC_Forrester_Paper.pdf
https://siliconangle.com/2018/05/29/report-software-container-adoption-grows-deployments-scale/

4IBM Hybrid Data Management Deploying Postgres databases in containers

Why choose containerized
databases now?
A containerized database is an encapsulation of its DBMS server
software, with access to a physical database file residing somewhere
within the network.

Each DBMS is encased in its own container image. Containerizing a
database, however, is not quite as straightforward as containerizing
an application. Some of the database containerization challenges
often cited are:

	– Databases typically require high-throughput, low-latency
networking. However, Docker containers do not natively provide the
level of storage and network resource isolation that is necessary to
achieve these requirements.

	– The considerable disk space required to store large amounts of
data in a containerized database makes it less agile and
less relocatable.

	– Databases are inherently stateful and durable, while containers are
typically stateless and ephemeral. The workarounds put into place
to handle persistent data storage and longer-than-usual container
lifespans often detract from the key container benefit of reduced
runtime resource usage.

	– Databases typically have numerous tuning parameters, many of
which are dynamic. Building a new immutable container image for
every possible database configuration can quickly result in image
sprawl. It should be noted, however, that this issue is even more of
a challenge in VM deployments, since containers are considerably
more lightweight than VMs.

An alternative to containerized databases
is Database-as-a-Service (DBaaS), an
API- based cloud service model whereby
the service provider is responsible for the
required database physical infrastructure
and server-side DBMS resources, including
performance configurations.

The bottom line
Ultimately, each project team must make its own decision about
whether a containerized database or DBaaS is the best cloud
database provisioning fit for the overall application architecture and
its development process. The primary drivers for a DBaaS cloud
deployment are typically productivity and simplified administration,
while for a containerized database, they are usually portability
and automation. In any case, when choosing the optimal pathway
to a database in the cloud, the following containerized database
characteristics should be taken into account:

	– Smaller containerized databases are well-suited to the
microservices architecture that is now often favored over large
monolithic applications. In contrast to a DBaaS database
deployment, where the database is a central resource for multiple
applications, a containerized database becomes, in essence,
a component of the specific application that it serves.

	– When the automated/scripted deployment of containerized
databases is used in conjunction with an orchestration framework,
the result works together with traditional clustering to ensure high
availability for both stateful and stateless systems.

	– The inherent elasticity of containerized databases supports more
flexible, and hence, less wasteful upfront database capacity
planning and provisioning. With containers, you can approach the
database as an on-demand utility.

	– Similarly, because containerized databases separate storage from
compute, storage performance and capacity can be scaled
independently of compute resources.

	– A software-defined containerized database provides a crucial
missing link in high-velocity DevOps cycles, allowing development
and operations teams to collaborate seamlessly.

One indication that containerized databases are trending is that
Postgres, a well-known open-source relational database, is currently
the third most popular technology being run on Docker.

Source: Datadog
00%

05%

10%

15%

20%

25%

30%

35%

Harproxy
Rabbitmo

ETCD

MysolMongo

Elastic
Search

Fluentd
Postgres

Redis

NGINX

Top technologies running on Docker

%
 o

f c
om

pa
ni

es
 ru

nn
in

g
th

is
 te

ch
no

lo
gy

Figure 1: Top technologies running on Docker.

https://www.datadoghq.com/docker-adoption/

5IBM Hybrid Data Management Deploying Postgres databases in containers

How EDB accelerates
containerization
Before considering the architecture of a containerized Postgres
deployment, it is important to understand what a standard EDB
environment configured for high availability looks like (Figure 2):

1.	 Monitoring and administration
Each Postgres server is monitored by an agent that reports its
tracked data to an administration tool.

2.	 High availability
EDB streams incremental changes from the master to any number
of read-only standby replicas. A high-availability agent watches for
failures and automatically triggers failover protocols according to
the nature of the detected failure.

3.	 Disaster recovery
EDB maintains a backup data store and automatically orchestrates
enterprise-grade disaster recovery procedures as required.

4.	 Scalability
EDB is one of the major contributors to the pgPool proxy, which
helps applications scale by load balancing read transactions to the
replicas while directing write requests to the master. There is also a
redundant pgPool proxy to which the application is automatically
connected by the high-availability agent in a failover situation.

Typical deployment

12

43

Data Data Data

DR
tool

HA
agent

Application

Read Read

Standby 1 Master Standby 2

Streaming
replication

Streaming
replication

Mon
agent

EDB
Postgres
server

HA
agent

Mon
agent

EDB
Postgres
server

pgPool
Proxy

HA
agent

Mon
agent

EDB
Postgres
server

Admin
tool

Redundant
pgPool proxy

Backup

Read/write
Metrics

Shared or local storage

Figure 2. �Standard (not containerized) high-availability Postgres database deployment

6IBM Hybrid Data Management Deploying Postgres databases in containers

In order to create a resilient Postgres architecture that can operate
at scale, the following four capabilities must be included:

	– Failover management for high availability
	– Database monitoring and administration management
	– Backup for disaster recovery
	– Query routing and load balancing for scalability

EDB Postgres is delivered as four containers, all of which are managed
by Kubernetes:

1 Database administration
Postgres Enterprise Manager (PEM), packaged in this container,
monitors the database, collecting performance and status data
that’s displayed within dashboards and analyzed for alert conditions.
These alerts can be relayed to operators or to other enterprise-level
management systems.

2 High availability and data management
This container includes EDB Postgres Advanced Server along with EDB
Failover Manager (EFM). Users can have Kubernetes spin up several
replicas of a master container so if the master fails, one of the replicas
can take over automatically.

3 Disaster recovery
This container includes the EDB Backup and Recovery Tool (BART),
which can back up databases in multiple different containers. This
enables BART to oversee multiple deployments.

4 Read scalability
This container delivers query routing and connection pooling using
pgPool. The benefit of this container is scaling read activity where
pgPool acts as a load balancer routing queries to replica databases.
It sits in front of the other containers and can be scaled independently
of the database container.

Recommended containerized deployment

Containers

1

2

4

3

Application

pgPool Postgres
Enterprise
Manager

EDB
Failover
Manager

PEM
agent

EDB
Postgres
Advanced
Server

Backup and
restore tool

Backup Data

Read scalability

Disaster recovery

High availability
and data management

Database
administration

Figure 3. �Recommended containerized deployment of EDB

7IBM Hybrid Data Management Deploying Postgres databases in containers

Who benefits from
using containers?

Anyone who wants to modernize
their infrastructure

EDB is platform agnostic and can be deployed on any Kubernetes
platform such as Red Hat OpenShift, Google Kubernetes Engine,
Pivotal Cloud Foundry, Docker, IBM Cloud, or Amazon Web
Services (AWS).

Figure 4 shows a typical configuration of EDB in a production
environment, with a master and two standby pods for high availability
and failover. Standby pods are a way to manage a deployment so that
redundant database servers can be on separate physical hardware.

Management and monitoring is done through PEM, with shared
storage being the preferable data storage practice in production
for the database itself, as well as for backup and recovery.

EDB customers can get immediate out-of-the-box benefits from
containerized Postgres databases. Typically, customers start with
simple applications and move to more complex systems over time.
EDB works closely with its customers, sharing with them best
practices for effectively leveraging containers in next-generation,
microservice-based applications.

Through its Architectural Roadmap and Solution Blueprint Service,
EDB solution architects help their customers design a customized
container roadmap for getting from where they are today (struggling
with large and cumbersome databases), to a new world of small
nimble deployments that are fully aligned with their strategic business
objectives. Leveraging a reference library of proven blueprints, full-
stack tool sets, and API integration designs, EDB customers can
accelerate their digital transformation initiatives, model a robust
open-source-based data architecture, and deploy rapidly across
complex environments.

HA
agent

Mon
agent

EDB
Postgres
Advanced
Server

HA
agent

Mon
agent

Recommended Kubernetes deployment

Database Tools Agents Containers Pods

Read/write

Standby 1 Master Standby 2

EDB
Postgres
Advanced
Server

HA
agent

Admin
tool

DR
tool

Shared or local storage

Mon
agent

EDB
Postgres
Advanced
Server

ProxyProxy

Application

Metrics

Streaming
replication

Streaming
replication

ReadRedundant Read

Data Data DataBackup

Figure 4. �Recommended containerized deployment of EDB

8IBM Hybrid Data Management Deploying Postgres databases in containers

Conclusion

Containers and container orchestration have matured to the point that
they are now positioned at the very core of cloud-native initiatives.
Like VMs, containers abstract the application layer from the compute/
storage/network infrastructure layer. Going one step further, however,
containers also abstract the operating system layer. The result is a
lightweight, resource-optimized, self-contained application that
performs consistently across a wide range of diverse platforms.
Enterprises around the globe are using containers for their dev/test and
production workloads to rapidly develop and deploy born-in-the-cloud
products and services that scale effortlessly.

In addition to containerized applications, containerized databases
have emerged as part of the paradigm shift from large monolithic
applications to applications composed of microservices. Rather
than a large centralized database that serves multiple applications,
containerized databases have become an on-demand utility that is
an integral part of the application itself. Despite these advantages,
containerized databases have also raised a unique set of challenges in
terms of high data availability, backup and recovery, and other critical
database performance and compliance requirements.

However, enterprise-grade database containerization solutions
from IBM and EDB allow enterprises to benefit from containerized
databases without forfeiting critical database administration and
monitoring requirements. For example, using native Postgres Docker
containers orchestrated with Kubernetes, EDB ensures high data
availability, as well as seamless failover, scalability and load balancing,
automated monitoring and tuning, and robust backup and recovery.
And deploying database solutions such as IBM® Db2® and Db2
Warehouse as a microservices-based data platform via IBM Cloud
Pak for Data can help you organize and analyze your data, ultimately
infusing AI capabilities throughout your enterprise.

Next steps

Visit the EDB website to learn more and try EDB Postgres on
Kubernetes—a containerized database management system
orchestrated by Kubernetes.

Try IBM Cloud Pak for Data, a containerized platform that includes
solutions from the Db2 family of products for database and data
warehouse needs.

https://www.ibm.com/account/reg/signup?formid=urx-45473&utm_medium=OSocial&utm_source=Thinkoutloud&utm_content=000026OP&utm_term=10000659&utm_id=EDB-Deploying-Postgres-Paper&cm_mmc=OSocial_Thinkoutloud-_-Cloud+and+Data+Platform_DAI+Hybrid+Data+Management-_-WW_WW-_-EDB-Deploying-Postgres-Paper&cm_mmca1=000026OP&cm_mmca2=10000659
https://www.ibm.com/account/reg/signup?formid=urx-45473&utm_medium=OSocial&utm_source=Thinkoutloud&utm_content=000026OP&utm_term=10000659&utm_id=EDB-Deploying-Postgres-Paper&cm_mmc=OSocial_Thinkoutloud-_-Cloud+and+Data+Platform_DAI+Hybrid+Data+Management-_-WW_WW-_-EDB-Deploying-Postgres-Paper&cm_mmca1=000026OP&cm_mmca2=10000659
https://www.ibm.com/products/postgres-enterprise?utm_medium=OSocial&utm_source=Thinkoutloud&utm_content=000026OP&utm_term=10000659&utm_id=EDB-Deploying-Postgres-Paper&cm_mmc=OSocial_Thinkoutloud-_-Cloud+and+Data+Platform_DAI+Hybrid+Data+Management-_-WW_WW-_-EDB-Deploying-Postgres-Paper&cm_mmca1=000026OP&cm_mmca2=10000659
https://www.ibm.com/account/reg/us-en/signup?formid=urx-34120&utm_medium=OSocial&utm_source=Thinkoutloud&utm_content=000026OP&utm_term=10000659&utm_id=EDB-Deploying-Postgres-Paper&cm_mmc=OSocial_Thinkoutloud-_-Cloud+and+Data+Platform_DAI+Hybrid+Data+Management-_-WW_WW-_-EDB-Deploying-Postgres-Paper&cm_mmca1=000026OP&cm_mmca2=10000659

9

© Copyright IBM Corporation 2020

IBM Corporation
New Orchard Road
Armonk, NY 10504

Produced in the United States of America
August 2020

IBM, the IBM logo, ibm.com, IBM Cloud Pak, IBM Business Partner, IBM Cloud, and
Db2 are trademarks of International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names might be trademarks of
IBM or other companies. A current list of IBM trademarks is available on the web at
“Copyright and trademark information” at www.ibm.com/legal/copytrade.shtml.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Micro-
soft Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trade-
marks of Oracle and/or its affiliates.

The registered trademark Linux® is used pursuant to a sublicense from the Linux
Foundation, the exclusive licensee of Linus Torvalds, owner of the mark on a world
wide basis.

Red Hat and OpenShift are registered trademarks of Red Hat, Inc. or its subsid-
iaries in the United States and other countries. This document is current as of the
initial date of publication and may be changed by IBM at any time. IBM Business
Partners set their own prices, which may vary. Not all offerings are available in
every country in which IBM operates.

The performance data discussed herein is presented as derived under specific
operating conditions. Actual results may vary. It is the user’s responsibility to eval-
uate and verify the operation of any other products or programs with IBM products
and programs. THE INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”
WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING WITHOUT ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
AND ANY WARRANTY OR CONDITION OF NON-INFRINGEMENT. IBM products are
warranted according to the terms and conditions of the agreements under which
they are provided.

EDB is not an IBM product or offering. EDB is sold or licensed, as the case may be,
to users under EnterpriseDB terms and conditions, which are provided with the
product or offering. Availability, and any and all warranties, services and support for
EDB is the direct responsibility of, and is provided directly to users by EnterpriseDB.

WGY5O1DD

	What is driving containers?
	Why choose containerized
databases now?
	The bottom line
	How EDB accelerates
containerization
	Who benefits from
using containers?
	Conclusion

